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Abstract

An inward precipitator collects particles initially dispersed in a gas throughout either

a cylindrical or spherical chamber onto.a small central planchet. The instrument is

effective for particle diameters greater than about 1 /_m. One use is the collection

of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon)

by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted

chamber. First, the particles are positively charged for several seconds by the corona

production of positive xenon ions from inward facing needles placed on the chamber

wall. Then an electric field causes the particles to migrate toward the center of the

instrument and onto the planchet. The collection time (of the order of hours for a 1 m

radius spherical chamber) is greatly reduced by the use of optimally located screens

which reapportion the electric field. Some of the electric field lines terminate on the

wires of the screens so a fraction of the total number of particles in the chamber is

lost. The operation of the instrument is demonstrated by experiments which show

the migration of carbon soot particles with radius of approximately 1 _m in a 5 cm

diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm

central collection rod.

1 Introduction

The motivation for the development of the present instrument which collects particles

onto a small planchet stems from our work in which we use a thin-walled chamber

filled with a noble gas (xenon) to stop interplanetary dust particles (IDPs) by gas

drag and ablation ([1])(Fig. 1). Xenon is used since it is dense and chemically inert.

The chamber is mounted on a spacecraft. A particle, after penetrating the chamber

wall and being stopped in the gas, is collected by electrostatic precipitation. In typical

applications of electrostatic precipitation, ions produced by a corona discharge from



a central wire attach to particles that then drift under electrostatic forces toward

large area collection plates. Becauseof the large collection area, the times required

to coat the electrodeswith particles is relatively long. This is useful in gascleaning

applications,but wouldbe undesirablein the samplingof particles for microscopyor

other analysisdue to the low densityof depositsthat would result. Thus a meansof

driving a particle to a small areaplanchet is desired.

In a sphericalgeometryusedfor IDP collection it is natural to placethe planchet

at or near the centerof the chambersincethe direction from which the IDPs enter

is unknown. The inward precipitator of Fig. 2ahasa small spherical planchet at the

center of a sphericalcavity. The particle enters the chamberat hypersonic velocities

and is decelerated. This is representedby the dashedsegment of the trajectories

shownin Fig. 2. After the particle is stopped,numerouscoronaneedlesplacedon the

wall act to chargethe IDPs positively by producing a flood of positive ions inside the

chamberwhen an electrical potential of about +20 kV is applied for severalseconds.

Positive ions are usedsince xenon is a poor absorberof electrons and, thus, would

be ineffective for particle charging if usedwith a negativecorona. An electric field

E is oriented to drive the particles to the planchet after they are charged. This is

representedby the dotted segmentof the trajectories shownin Fig. 2. The geometry

of Fig. 2ahaslimitations in that E is too weakin regionsfar from the planchet andthe

migration speedof the particle is low there, resulting in long collection times (--_1000

hrs for 5 micron particles in a 1 m radius sphericalchamber). To increasethe field

strength for from the planchet,one or more intermediate reapportioning screensare

added (Fig. 2b). As will be shownbelow, the screenssignificantly enhanceparticle

migration and reducethe collectiontime by more than two orders of magnitude.

This paperpresentsthe techniquesusedfor particle chargingand a detailed analy-

sisneededto determine the positionsof the reapportioning screensthat minimize the



collectiontime in both the cylindrical and sphericalgeometries.Resultsof somepre-

liminary experimentswith a working cylindrical modelare presentedand compared

with theoretical performance.

2 Theory

2.1 Particle Charging in a Gas

A micron-size dielectric particle suspended in a gas can be charged with tens or

hundreds of elementary charges using corona field charging techniques.

At the end of a sharp needle that is held at a positive potential, the electric field

lines are directed outward, and the small numbers of free electrons that are present

in the gas are accelerated toward the needle. If the potential is high enough then

these electrons will be accelerated to sufficiently high kinetic energies (,-,12 eV) to

ionize xenon atoms. Each collision liberates additi'_nal electrons and positive xenon

ions, establishing a positive corona around the needle tip. The positive xenon ions

are repelled from the needle and out into the surrounding gas. It is these positive

ions which attach to and charge the IDPs in the gas.

It is also possible to operate negative coronas by applying a negative potential to

the needle, but for particle charging applications this requires a surrounding gas that

is an efficient absorber of electrons. Since noble gases are not efficient absorbers of

electrons due to their low electron affinities [2], the negative corona is not used.

Field charging occurs when the positive ions created by the corona migrate along

electric field lines and impinge on the particle. As the charge on the particle increases

the electric field in the vicinity is altered. At high particle charge levels, incoming

positive ions are deflected, and field charging ceases at the saturation field charge qs.

q



The time required to reach q, is [3]

4_o

where r, is the time for complete field charging, eo is the permittivity of free space,

e is the elementary charge, Bi is the ion mobility, and Ni._ is the background ion

number concentration. For the operating conditions of the proposed collector (xenon

gas at 0.2 atmospheres and 270 K), F_,qn. (1) gives rc ,_ 0.1 s. This time is much

less than the overall collection times in a chamber of the size being considered (which

is of the order of 1 meter in radius) so the particles can be assumed to achieve the

saturation field charge rapidly. The saturation charge is [3]

3n
2

qs = 4re,, + 2E_Rp, (2)

where n is the dielectric constant of the particle, E_ is the magnitude of the back-

ground electric field, and Rp is the particle radius. Equation (2) is derived assuming a

spherical and homogeneous particle. Typical values of _ for mineral particles as might

be encountered in interplanetary space range from approximately 2 to 10. Values for

metallic particles would be higher.

As long as the background xenon ions are present, ions continue diffusing to the

particle surface, thereby increasing its charge beyond the value given by Eqn. (2) [3].

It is assumed here, however, that potentials high enough to cause electrical discharges

at the corona needles will be applied only long enough (several seconds) to reach the

field charging saturation charge qs. The ion migration time through a 1 meter radius

chamber with three screens is about 3 seconds, assuming an ion mobility of 10 -4 m 2

V -1 s -1 and VT = 20 kV. Hence, the ionswill quickly be removed from the chamber,

and the final particle charge will be q,.



2.2 Particle Motion

2.2.1 Spherical Case

In order to describe the migration of a particle in the spherical chamber the electric

field must be known throughout. Assuming the space charge density to be negligi-

ble, the potential between two concentric spheres is given by Laplace's equation in

spherical coordinates with radial dependence only,

1 0 [r2OV.
(_ Or "_-_-rj = O. (3)

For rj > r; where r_ and rj are the radii of the spheres which are held at potentials

V, and Vj, respectively, the solution to Eqn. (3) in the region between the concentric

spheres is

Y(r) - -_ [_'_J (Y,- Yj) + rjYj - r,V,]
rj r i r

with r_ <_ r < rj. The corresponding radial electric field strength is

(4)

= --- =OVl[v - yjl , j. (5)
Or r _ rj ri

The particles, having been charged positively to the field charge saturation level,

will migrate toward the sphere center under the action of the electric field. For

Stokesian particles (those with Reynolds numbers Re = 2upRpp/g < 0.1, where up is

the_particle speed, P.. is the particle radius, p is the gas density, and # is the absolute

viscosity) the radial migration velocity speed is [3]

q, Er
= -- (6)

67r_Rp

where r is the radial position of the particle. Equation (6) is valid for approximately

1/2 < Rp < 5 microns, which is the range of interest for this study. The lower limit

is set by the requirement that the particle is much larger than the mean free path

(which is about 0.3 microns for xenon at 0.2 atm and 300 K) and the upper limit is



set by the Stokesflow regime(low Re) requirement. For particles outside this range,

both Eqns. (2) and (6) would need to be modified.

Rearranging and integrating Eqn. (6) gives

= dt = tj - ti. (7)

To find the time T = ti - tj for the particle to move from one screen to the next in the

spherical chamber, we set ri and r_ to the radial locations of the screens. Substituting

Eqn. (5) gives

f_'i 6rr_uRvdrT= , icrV,_V_ri---------_i.
(s)

Since the particle is positively charged (qs > 0), we must have Vi < Vj to move the

particle toward the sphere center. Thus

f 3T = 6fieRY r_ - r i r_ 2r_Rp rj -- ri rj

rirjq Vj Vi r2dr _ > 0. (9)- , q Vj Wi rirj

The total time TT for the particle to pass from the outside of a spherical chamber

with n internal screens to the central planchet is a sum over the n + 1 zones between

the screens. Thus,

3

TT -- qs i=0 W,+l Vi -ri+lri

where r,+a = R is the overall radius and ro is the planchet radius.

One way to set the potentials on each screen is to divide the total available

potential VT into even portions, so that V_. - _ = const. = VT/(n + 1). Thus

V_ = (i - 1)VT/(n + 1). By fixing the voltages on the screens, the number of indepen-

dent variables in the system available for minimizing TT is reduced from 2n to n. The

minimum in TT that is found will not be the absolute optimum, but the beneficial

effect of the screens is still obvious and the calculation may be extended to include

varying voltages in a straightforward manner. An example of this is given later. For

-7



now we have Vi+a - V_ = AV = VT/(n + 1) and Eqn. (10) becomes

2_'#P_,(n + 1) _ (ri+l - ri)(rhl - r_)
TT -- q, YT i=0 ri+ lri

(11)

If we now define the dimensionless radial coordinate _ = r/R and the dimensionless

time

we obtain

fr = Tr (12)
q. VT

fr = (- + 1)_ (_'+' - ÷,)(_h,.. - _) (13)
i=0 ri+ l ri

Proper positioning of the screens minimizes TT. The number of independent variables

available for minimizing TT is n, namely the screen positions _a,...,_,, with the

restriction

1 > _,, > r_,,_l > _,,-2 > ... > r_l > ÷p. (14)

The total time TT in Eqn. (13) was minimized numerically for n =1, 2, and 3 and

for r_p = 0.001. This was done by systematically moving the screens throughout all of

their allowed positions and noting the positions corresponding to minimum 7_T. Table

1 shows the results.

By the addition of a single screen the collection time is reduced to 1.8% of its

original value. Diminishing returns are seen with additional screens but with three

screens the collection time is reduced to 0.54% of its original value. Thus, the screens

are very effective. The dimensionless electric fields E/(V/R) versus ÷ without screens

and with three screens are shown in Fig. 3. The screens add electric field strength to

the outer regions of the chamber where the migration velocities would otherwise be

very low. The dimensionless particle motion characteristics for these two geometries

are shown in Fig. 4 where t = tqsVT/(2rcl_RpR 2) is the dimensionless time. Notice

that the screens act to give the particle a more constant speed as it travels inward as

compared to the motion without screens. For a concrete example, consider particles

$



in a 1 m radius chamber with three screens filled with xenon gas at 300°K and 0.2

atm and with +20 kV total available potential. The potentials are thus +20 kV, +15

kV, +10 kV, +5 kV and 0 kV on the outer wall, screens, and planchet, respectively.

Collection times are shown as a function of particle size and dielectric constant in

Fig. 5. The collection time is inversely proportional to the particle size and dielectric

constant.

The dimensionless size of the planchet has an effect on the collection times and

screen positions. For a planchets with radii of 0.05% and 0.2% of the overall sphere

radius, the dimensionless collection times for three screens are 5.75 and 5.11, respec-

tively. Also, as given in Table 2 the optimum screen positions are such that the

screens are placed closer to the planchet for the smaller planchet.

If we relax the restriction that the potential is equally divided over the zones

of the chamber then 7_r can be further reduced. For example, consider a spherical

chamber with one internal screen (n = 1) and _p = 0.001. Both the screen position

and potential are allowed to vary such that _'T iS a function of ÷2 and IY2, where

÷1 < ÷2 < 1 and 0 < V2 < VT. For this case, TT = 15.9 with ÷2 = 0.106 and

V2 = 0.272VT. This compares to the one screen case in Table 1, which has _FT = 17.7,

÷2 = 0.135 and V2 = 0.500VT. Thus a reduction in _FT is obtained by reducing the

potential on the screen and moving it slightly inward toward the planchet.

2.2.2 Cylindrical Case

The cylindrical geometry can also be treated using the above analysis. The governing

equation for the potential is

1 0 .r0V] = 0 (15)

q



with V = V_ at r = ri, V = Vj at r = rj, where ri and rj are the radii of cylinders

which are held at potentials V_ and Vj, respectively. The solution to Eqn. (15) is

V(r) = Vj ln(r/rj)- V_ In(r/rj)
ln(rj/ri)

(16)

for ri < r < r_. The electric field is

E(r) = V,- V,
r In(re/r,)"

(17)

Eqn. (7) then gives

t,- t_ = ZI'
6r_Rv

dr.

Assuming q > 0 and V/> Vi gives

(18)

6r#Rvln(rj/r,) Z _' 3r#Rv In(rift,)ti- tj = q(Vj - V_) , rdr = q(Vj - v,) (r_ - r_) > 0. (19)

The total collection time for the cylindrical chamber with n internal screens is

q ,=oE --_, (r_- _)' (20)

where r,+l = R and r0 = rp. If we set _ - V_ = cons_., then

3.,P_(n + I)_ln(r_/_,)(r_ - _?). (21)
TT = q VT i=0

Using the previously defined dimensionless variables we obtain

T1

TT = _(n + 1) _ln(_j/_,)(÷_ -- ÷7). (22)
i=0

Table 3 shows the results of minimizing Tr for the cylindrical case for one, two, and

three screens for _p = 0.001.

A cylinder collects a particle in a shorter time than a sphere of the same radius

i "

that is held at the same potential (Table 1). For example, with three screens the

collection time for a cylindrical chamber is 67% that of a spherical one. The screens

enhance the collection speed, although the increase is not as great as for the spherical



case. One screenreducesthe collection time to 46.4%of the value for zeroscreens

wtiile three screensreduceit to 35.2%. The influenceof the dimensionlessplanchet

sizeand variable voltagesis qualitatively similar to that for the spherical geometry.

2.3 Particle Loss to the Screens

Since a fraction of the electric field lines around the screen wires terminate on the

wires, some particle losses will occur as particles migrate across the chamber. The

magnitude of this loss depends on the details of the screen mesh size and shape and

wire size and shape. It also depends on the physical characteristics of the particles

since there are aerodynamic and inertial forces involved in the migration. To illustrate

how loss can occur, we considered an infinite array of wires between two parallel plates.

The upper plate (at _ = 1)is held at a potential 1)3 = 1 (where 1) = V/Vr) and the

lower plate (at # = 0) is grounded. The wires (at _ = V2) are held at a potential

1)2 where _ < I_'2 < I?a. A positively charged particle would thus migrate from the

top plate toward the bottom plate. In both the cylindrical and spherical geometries

considered above the screens strengthen the electric field in the outer part of the

chamber and weaken it in the inner part. This can be simulated in the test geometry

by setting, for example, 1)2 = 0.5 and _)2 > 0.5. To obtain the field lines the potential

field 1)(_,_)) must be solved. The governing equation, assuming no space charge, is

the Laplace equation in rectangular coordinates

021) 0 1)
7 + o9----= o. (23)

The boundary conditions for Eqn. (23) are 1)(wire) = 1_'2, 1)0) = 1) = 1, l?(y =

0) = 0, and a_'(:_ = 0,:_ = 1) = 0. Equation (23) was solved numerically using a

finite-element method [4]. The wire surface is simulated by setting four points in

the numerical grid equal to 1)2. The resulting field lines are shown in Fig. 6. In

this example 40% of the field lines terminate on the surface of the wire. Hence,



sincethe particles migrate along field lines, approximately 40% of the particles will

deposit on the wire. The remaining particles will continue to migrate towards the

central collectors. In the actual instrument anexperimental calibration or full three-

dimensionaJsimulation is neededto quantify the loss.

3 Experiments

To demonstrate the operation of the inward electrostatic precipitator, a cylindrical

chamber was constructed (Fig. 7). A cylindrical geometry was chosen for ease of

experiment and construction. The brass outer casing was 5.1 cm diameter. The ends

and sides were fitted with clear Lucite ports to allow videotaping and He-Ne laser

illumination of the particles. The particles were injected using a syringe through a

port in the side of the casing and allowed to diffuse throughout the interior of the

chamber prior to applying any potentials. 4 long range microscope (Questar QM1),

CCD camera (COHU 4815-5000/0000) and video cassette recorder (Panasonic AG-

1830 in S-VHS format) were used to record the motion of the particles (Fig. 8). The

particles were charged by one to two seconds of corona discharge of positive ions from

corona needles held at q-10 kV and placed at the perimeter of the precipitator. After

charging, the potential was reduced to ÷6 kV to stop the corona but maintain an

electric field. The particles then migrated toward the 3.2 mm diameter grounded

collection rod. A single 2.5 cm diameter screen electrode was held at half the casing

potential (i.e., +5 kV during charging and q- 3 kV during collection).

The particles were carbon soot produced from acandle flame [5]. To obtain the

particles, a glass container was placed over the flame until it extinguished, producing

large amounts of the soot aerosol. The particles were extracted from the container

with the syringe and then injected into the cylindrical precipitator. Some large-

scale motion occurred just after injection into the chamber but this ceased after



approximately one minute. The appearanceof particles in the chamber before any

potential wasapplied is shownin Fig. 9 which is a photograph taken directly from

a black and white monitor. On the original video recording, the particles were seen

to moveunder Brownian motion and slow gravitiational settling, but all large-scale

fluid motion had ceased.

After charging,all particlesmigratedtoward the collection rod. The speedvaried

from particle to particle due to the variation of sizeand charge. Figure 10 shows

photographsof a particularly slow particle taken at 0.17 s intervals. The average

speedwas4.5mm/s. This particle waschosenfor photographing sinceits slow speed

facilitated better imagesfor the figuresin this paper.

The experimentallydeterminedspeedcannot bepreciselycomparedwith the theo-

retical predictionssincethe exactsizeand chargeof the particle seenin the videotape

was not known. By the observedsettling speedof the particles in the chamber, the

averageparticle diameter was roughly 1 gm. Using Eqn. (2) for the charge in the

migration velocity calculation (Eqn. (6)) gives43 ram/s, which is one order of mag-

nitude higher than observed. The particle in Fig. 10 probably did not receivethe

full saturation chargegivenby Eqn. (2) due to its initial location in the chamberand

anomaliesin the spatial densityof ionsgeneratedin the charging process.Other par-

ticles seenon the videobut not photographedhad speedsaveraging30mm/s-roughly

correspondingto the theoretical valueof 43 mm/s.

Motion of particles through the electrified screenwas also observed. Figure 11

showsphotographsof a slow particle taken at 1.0 secondintervals as the particle

passedthrough the screen.The averagespeedof this particle was 1.5 mm/s. Again,

the theoretically predicted value is higher than this by one order of magnitude, the

differencebeing mainly due to chargeanomalies. Other particles seenon the video

but not photographedhad speedsof the order of the theoretically predicted values.



4 Conclusions

The basic design concepts of the inward electrostatic precipitator have been described.

The instrument is designed to collect interplanetary dust particles (IDPs) with diam-

eters ranging from approximately 1 to 1000 microns initially dispersed throughout a

large volume filled with xenon gas onto a planchet of small size so that the particles

can be easily located for inspection and analysis. Particles below 1 micron are difficult

to charge by field charging and particles above 1000 micron radius may be too large

to move through the screens. (The calculations are valid for particles ranging from

about 0.5 to 5 microns in radius.) The analysis of the motion of charged particles in

an electric field was used to optimize the positions of one, two, or three intermediate

screens which greatly enhance the collection speed. Three internal screens appropri-

ately placed in a spherical inward precipitator decrease the collection time by a factor

of 185. The collection time is inversely proportional to the particle size and dielectric

constant. For example, a 10/lm diameter mineral particle (_ -,_ 2) requires 0.78 hours

and a conducting particle (_¢ ,,_ 10) requires only 0.47 hours, while a 1 gm diameter

particle requires 7.8 hours and 4.7 hours, respectively.

The screens also decrease the collection time in a cylindrical precipitator and

results are presented for this geometry as well. A cylindrical precipitator with three

screens can collect a particle in 67% of the time required for a spherical precipitator

with three screens and with the same overall radius.

Because of the nature of the potential field around the wires in the screens, some

particle loss will occur due to impingement. This effect is demonstrated with the use

of a finite element solution of Laplace's equation which governs the potential field

around an infinite array of wires between two parallel plates in the absence of space

charge. The loss was 40% in this example in which the wire-to-wire spacing was ten

/q



times the wire diameter. Losses could be reduced by using a wide spacing between

wires in the array.

A cylindrical inward precipitator was constructed for demonstration purposes.

A long range microscope, CCD camera and video casette recorder showed ,-,1 /_m

diameter particles moving through the screen and impinging on the central planchet

at speeds of a approximately 30 mm/s, roughly equivalent to the value of 43 mm/s

predicted by the theory.
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Figure 2: Geometry of the inward electrostatic precipitator. Particles dispersed

throughout the chamber after being stopped by gas drag and ablation are collected by

charging them and applying an electric field to force them toward the small planchet
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space. Dashed lines indicate trajectories during deceleration. Dotted lines indicate

trajectories during electrostatic precipitation.
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periodic geometry that extends to infinity to the left and right is shown.
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999 0

17.7 1

7.47 2

5.44 3

number of screens screen positions (_)

0.135

0.069, 0.406

0.049, 0.254, 0.595

Table 1: Optimal screen positions for a spherical inward electrostatic precipitator.



TT" number of screens (n) screen positions (_)

for _p = 0.0005:
1999 0 -

5.75 3 0.038, 0.232, 0.579

for _p = 0.002:
499 0 -

5.11 3 0.062,0.277,0.612

Table 2: Effect of dimensionless planchet size.



number of scr_ns (n) screenpositions (÷)
10.4 0

4.83 1

3.98 2

3.66 3

0.301

0.179,0.569

0.130,0.400,0.697

Table 3: Optimal screen positions for a cylindrical inward electrostatic precipitator.




